Improving Collaborative Filtering in Social Tagging Systems
نویسندگان
چکیده
User-based Collaborative Filtering (CF) systems generate recommendations for a specific user by combining feedback (i.e. information about what is relevant for a user) provided by a set of people similar to that user. In these system the similarity among people is computed by taking into account the set of shared resources. However, there are several application domains, such as social tagging systems, where each user may have several different Topic of Interests (ToIs). In these cases, two users could share only some interests and, therefore, only a part of the feedback should be considered for producing recommendations. Focusing on social tagging systems, we propose here a novel approach to detect ToIs in the collection of the bookmarks of a user. Given a specific ToI, we adaptively identify similar people (i.e., sharing the same ToI) and select only the resources relevant to the specific ToI.
منابع مشابه
Tag-Based Contextual Collaborative Filtering
In this paper, we introduce a new Collaborative Filtering (CF) model which takes into consideration users’ context based upon tagging information such as available from recently popular social tagging systems. In numerous implementations, traditional CF systems have been proven to work well under certain circumstances. However, CF systems still suffer a weakness: They do not take context into c...
متن کاملImproving Recommendation based on Implicit Trust Relationships from Tags
In this paper, we proposed an implicit trust relationship extraction approach to alleviate the sparsity problem in recommender systems. The recommender system cannot generate relevant items when a user-item matrix is sparse. It is a serious weakness of collaborative filtering based recommender systems. In social tagging system, tagging information is useful data source for recommendation. We in...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA Fast Recommendation Algorithm for Social Tagging Systems : A Delicious Case
The tripartite graph is one of the commonest topological structures in social tagging systems such as Delicious, which has three types of nodes (i.e., users, URLs and tags). Traditional recommender systems developed based on collaborative filtering for the social tagging systems bring very high demands on CPU time cost. In this paper, to overcome this drawback, we propose a novel approach that ...
متن کاملRecommending Items in Social Tagging Systems Using Tag and Time Information
In this work we present a novel item recommendation approach that aims at improving Collaborative Filtering (CF) in social tagging systems using the information about tags and time. Our algorithm follows a two-step approach, where in the first step a potentially interesting candidate item-set is found using user-based CF and in the second step this candidate item-set is ranked using item-based ...
متن کامل